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A new numerical method, the boundary point method, used for calculating the
acoustic radiation problem caused by a vibrating body is presented. The gist of
the new numerical method is to replace the coe$cient matrices [A] and [B] in
the system equation with the particular solution matrices which are formed of the
particular solutions generated by fabricated sources. In the boundary point
method, it is unnecessary to consider the interpolating operation and the singular
integral which is indispensable for the BEM also does not exist. By avoiding the
direct computation for the coe$cient matrices, the boundary point method can
improve the calculation speed substantially while maintaining the calculation
precision. Another advantage of the method is that it can be used for calculating
the acoustic parameters (such as the sound pressure, etc.) at any desired point in the
sound "eld without calculation of the acoustic parameters on the surface. Finally,
the boundary point method can overcome the non-uniqueness problem at the
characteristic wavenumbers e!ectively.

The boundary point method put forward by the authors is applied to the
calculation of the exterior acoustic radiation problem caused by a vibrating body.
A detailed description of this method is presented. A test for the boundary point
method is carried out on the aspects of its calculation precision and speed,
adaptation to the geometric shape of vibrating body as well as e!ectiveness to
overcome the non-uniqueness problem through various examples with di!erent
shapes and di!erent boundary value distributions. An experiment on the exterior
acoustic radiation of a vibrating rectangular box is performed in a semi-anechoic
chamber.
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1. INTRODUCTION

The boundary element method (BEM) has long been an e!ective numerical
technique for the calculation of the exterior acoustic radiation problem. The major
022-460X/99/490761#12 $30.00/0 ( 1999 Academic Press



762 S. Y. ZHANG AND X. Z. CHEN
advantages of the BEM over domain methods are the reduction of the
computational dimension of the problem by one and adaptation to the in"nite
domain problem. However, the BEM is not without shortcomings. One of its
disadvantages is the formation of the coe$cient matrices [A] and [B] in the
system equation, which consumes a lot of CPU time. Another disadvantage is that
it has non-unique solutions for exterior problems at certain characteristic
frequencies associated with characteristic frequencies of corresponding interior
problems [1].

A new numerical method, the boundary point method, used for calculating the
acoustic radiation problem has been studied by the authors recently. In the
boundary point method, a series of fabricated sources are constructed on the
normal lines of the surface nodes of the vibrating body. The coe$cient
matrices [A] and [B] in the system equation can then be expressed by the
particular solution matrices, which are formed of the particular solutions on the
surface nodes generated by these fabricated sources. Comparing with the BEM,
it is clear that the boundary point method can decrease the time consumed in the
formation of the coe$cient matrices greatly and avoid the treatment of the
singular integral completely. Besides, the non-unique solution problem arising
from the application of the boundary integral equation (BIE) or the BEM in
exterior acoustic radiation problem no longer appears in the new numerical
method [2, 3].

2. THE BOUNDARY POINT METHOD

Consider a vibrating "nite body of enclosed arbitrary surface q in an in"nite
homogeneous #uid whose density is o, and speed of sound c. The #uid "lls the
region D

`
exterior to q. The region interior to q is designated D} . The steady state

case in which the velocity potential is a harmonic function of time is adopted here.
The system equation in matrix form for exterior problem, based on the classical
Helmholtz integral equation, can then be written as

[A] MUN"[B]G
LU
LnH, (1)

where MUN is an unknown m-vector composed of the velocity potential on the
surface nodes, n is the unit normal on q (directed away from D

~
), MLU/LnN is

a known m-vector determined by the normal velocity on the surface nodes. [A]
and [B] are m]m coe$cient matrices and m is the total number of the surface
nodes.

The points p and q are two arbitrary surface nodes of vibrating body as shown in
Figure 1. A cube whose side is 2h may be constructed in the interior region D} . The
cube is located on the normal line of node p and away from p for some distance.
Suppose that uniform source is applied to the cube, the cube can then be used as
a fabricated source (of course, other kinds of fabricated source can also be adopted,
such as spherical surfaces, etc.). The solution on node q generated by the fabricated



Figure 1. The diagram of the boundary point method.
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in which m
i
and q

i
(i"1,2,3) are the co-ordinate components of point m throughout

the cube and node q on q, respectively, k is the wavenumber u/c where u is the
circular frequency. U*

T
(p, q) and (LU*

T
/Ln

q
) (p, q) in formula (2) can be calculated by

the 3-D standard Gaussian quadrature after transformation of the upper and lower
limits.

The m-vectors MU*
T
(p)N and MLU*

T
(p)/LnN are formed when node q replaces all the

m nodes on the surface one by one and can be regarded as a particular solution for
the system equation, i.e.,

[A] MU*
T
(p)N"[B]G

LU*
T

Ln
(p)H. (3)

Similarly, the m]m particular solution matrices [U*
T
] and [LU*

T
/Ln] consisting of

m particular solutions can also be formed when node p replaces all the m nodes on
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the surface one by one and satisfy

[A] [U*
T
]"[B]C

LU*
T

Ln D . (4)

Formula (4) can be rewritten as

[A]~1[B]"[U*
T
] C

LU*
T

Ln D
~1

. (5)

Therefore, MUN can be evaluated when MLU/LnN is speci"ed as

MUN"[A]~1[B]G
LU
LnH"[U*

T
] C

LU*
T

Ln D
~1

G
LU
Ln H . (6)

Besides, the boundary point method can also be used for calculating the velocity
potential at any desired point x in the sound "eld, denoted by U(x), without
calculation of the velocity potentials on the surface nodes. U(x) can be expressed, in
the form of the boundary values MUN and MLU/LnN, as [3]

U(x)"MCN5MUN#MDN5G
LU
LnH , (7)

where MCN and MDN are coe$cient m-vectors, and the superscript &&t'' denotes the
transposition operation.

Combining equations (1) and (7) yields

U (x)"(MCN5 [A]~1[B]#MDN5)G
LU
Ln H"MEN G

LU
LnH , (8)

where MEN"MCN5[A]~1 [B]#MDN5.
Suppose that MU*

T
(x)N is a m-vector composed of the velocity potentials at point

x generated by the fabricated sources, and [LU*
T
/Ln] an m]m matrix composed of

the normal derivatives of the velocity potentials on the surface nodes generated by
the fabricated sources, we have

MU*
T
(x)N5"MEN C

LU*
T

Ln D . (9)

Formula (9) can be rewritten as

MEN"MU*
T
(x)N5C

LU*
T

Ln D
~1

. (10)
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Therefore, U(x) can be evaluated when MLU/LnN is speci"ed:

U(x)"MU*
T
(x)N5C

LU*
T

Ln D
~1

G
LU
LnH . (11)

Once the velocity potential and its normal derivative are known, the sound
pressure P, sound intensity I and sound power= can be obtained subsequently.

3. NUMERICAL EXAMPLES

3.1. THE PULSATING AND OSCILLATING SPHERE

For the problem of acoustic radiation from a pulsating sphere or an oscillating
sphere, the analytical solution of the sound pressure on the surface for a pulsating
sphere of radius a pulsating with uniform radial velocity v is

P(a)"jvocka/(1#jka) (12)

and the analytical solution of the sound pressure on the surface for an oscillating
sphere of radius a oscillating with radial velocity v cos h (h"0 is the direction of
oscillation) is

P (a)"(v cos h)
jocka (1#jka)

2(1#jka)!(ka)2
, (13)

where o"1)21 kg/m3 is the gas density and c"344 m/s the speed of sound in the
gas.

Figure 2 shows the discretization of the spherical surface with a"0)1m,
v"0)1 m/s. The total number of the surface nodes is 20. The numerical and
Figure 2. The sphere.



TABLE 1

Results for the pulsating sphere

ka Numerical solution Analytical solution

1 20)4706#j20)4600 20)4706#j20.4600
2 32)7308#j16)3722 32)7307#j16)3720
3 36)8277#j12)2771 36)8273#j12)2770
*3)14 37)1551#j11)8267 37)1554#j11)8269
4 38)5130#j9)6278 38)5132#j9)6277
5 39)3472#j7)8685 39)3466#j7)8681
6 39)8140#j6)6362 39)8139#j6)6363
*6)28 39)9096#j6)3515 39)9091#j6)3517
7 40)1007#j5)7287 40)1016#j5)7288
8 40)2906#j5)0357 40)2905#j5)0360

TABLE 2

Results for the oscillating sphere

ka Numerical solution Analytical solution

1 5)7947#j17)3649 5)7966#j17.3687
2 23)1368#j17)3632 23)1404#j17)3669
3 27)5699#j11)2320 27)5727#j11)2348
4 28)4873#j8)0089 28)4898#j8)0122
*4)49 28)6512#j7)0070 28)6534#j7)0106
5 28)7492#j6)2053 28)7509#j6)2091
6 28)8450#j5)0706 28)8458#j5)0752
7 28)8870#j4)2895 28)8867#j4)2951
*7.73 28)9037#j3)8600 28)9025#j3)8624
8 28)9082#j3)7193 28)9066#j3)7260
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analytical solutions of the sound pressure on the surface for the pulsating and
oscillating sphere at di!erent wavenumbers are shown in Tables 1 and 2 (without
loss of generality, the calculating results for node 2 are listed for the oscillating
sphere). The errors between the analytical solutions and the numerical ones are less
than 0)5%.

The authors have tried using the BEM with cubic spline interpolating function to
evaluate the sound pressure on the surface for two examples [4]. From the results it
is found that the numerical solutions will be severely in error at the characteristic
wavenumbers ka"n, 2n for the pulsating sphere and ka"4)4934, 7)7252 for the
oscillating sphere. However, satis"ed numerical solutions for the characteristic
wavenumbers can be obtained by the boundary point method.

To illustrate the computational e$ciency of the boundary point method, the
computing time of the BEM with cubic spline interpolating function for one
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wavenumber is compared with that of the boundary point method. The former is
18)8 s and the latter is 2)2 s.

3.2. THE FINITE CYLINDER

Let us consider the acoustic radiation from a "nite cylinder of radius a and length
2b where b/a"2. A uniform radial velocity is prescribed on the periphery of the
cylinder. The ends of the cylinder are motionless. This problem is a modelling
challenge for the numerical method because the "nite cylinder processes most of the
features of an arbitrary body (e.g. a combination of curved and #at surfaces
connected at edges). Many investigators [5}7] took this problem as a test example
and calculated its far"eld sound pressure patterns on a circle of r"5a centered at
the origin of co-ordinates. Herein the same calculations for this problem are carried
out by the boundary point method. Figure 3 shows the discretization of the surface
of the "nite cylinder. The total number of the surface nodes is 32. The far"eld
(r"5a) sound pressure patterns are calculated and plotted against the polar angle
for ka"1, 2, 2)53, respectively (ka"2)53 is corresponding to a characteristic
wavenumber of the "nite cylinder), as shown in Figure 4. The results of the
boundary point method agree with those obtained in references [5}7] for the same
problem. The computing time of the boundary point method is 12)5 s and much less
than that of the BEM.

3.3. SOUND POWER FOR A CUBE

To show how well the method proposed in this paper handles bodies with edges
and corners, a cube with side of length 0)2 m is considered. The test problem is set
up by constructing a substitute problem [8]: the surface normal velocity is given by
the values obtained from the point source at the center of the cube. A point source
of unit strength produces sound power of k2oc/8n where k is the wavenumber.
Hence, a point source of strength 8n/k2oc has unit power and it is used as the
Figure 3. The cylinder.



Figure 4. The far"eld sound pressure patterns.

Figure 5. The cube.

TABLE 3

Sound power for the cube

ka Numerical Theoretical ka Numerical Theoretical
solution solution solution solution

1 1)0010 1 5 1)0016 1
2 0)9974 1 6 1)0007 1
3 0)9959 1 7 0)9981 1
4 0)9967 1
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substitute source in the test. The surface of the cube is divided as shown in Figure 5.
The total number of the surface nodes is 74. The numerical solutions of the
boundary point method at di!erent wavenumbers are given in Table 3. It can be
found that these numerical solutions coincide well with the theoretical solution.
The errors between the numerical solutions and the theoretical ones are less than
0)5%. The computing time for one wavenumber is less than 2 min.



Figure 6. The treatment for the corner.
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In the boundary point method, the nodes which are on the corners and edges are
treated in a manner di!erent from those in the BEM. For example, the node m in
Figure 6 is a corner of three surfaces s

1
, s

2
and s

3
. In the calculation of the boundary

point method, the node is replaced by nodes m
1
, m

2
and m

3
which are slightly away

from m and on three surfaces respectively. The corners and edges are smoothed after
the treatment and correspond to the circular beads of the mechanical parts.

4. EXPERIMENT

Many mechanical parts such as the axial box of the lathe tool, etc. have a shape
similar to that of a rectangular box in engineering. Therefore, it is valid to study the
acoustic radiation problem caused by a vibrating rectangular box which can be
considered to be the representative of such a problem. For this purpose, a steel
rectangular box with side of length 0)28 m(L)]0)27 m(W)]0)26 m(H) is
manufactured. Each surface of the box, except for the bottom which will be "xed
"rmly on the ground in the experiment, has been arranged with 25 surface nodes
regularly. Experimental measurements are taken for the vibrating velocity
(including both the amplitude and the phase) on the total 125 surface nodes of the
rectangular box and the sound pressure level at 10 points on a half-spherical surface
around the rectangular box shown in Figure 7 corresponding to homogeneous
excitation of 500 Hz in a semi-anechoic chamber. Figure 8 shows the diagram of the
whole measuring equipment. Taking the vibrating velocities as input, the sound
pressure levels at the above 10 points can be calculated by the boundary point
method. From the comparison of the calculated results and measured results shown
in Table 4, the e!ectiveness of the boundary point method for the calculation of
acoustic radiation problem is further veri"ed.

The measurement error is one of the important factors that in#uences the
computational accuracy. Due to the limitation of the experimental facilities, the
normal velocities on the 125 surface nodes cannot be measured simultaneously.
Thus any slight #uctuation of the measurement devices, such as the temperature
drift, will a!ect the measurement accuracy as well as the computational accuracy
subsequently. Instead of being measured, however, the normal velocities on the



Figure 7. The measuring points of the sound pressure level.

TABLE 4

¹he Comparison between the calculated results and the measured results (dB)

No. Calculated result Measured result Error

1 53)8973 56)5 2)6
2 53)9822 56)6 2)6
3 51)8076 54)0 2)2
4 59)7566 58)8 1)0
5 52)2220 53)5 1)3
6 55)7863 55)6 0)2
7 67)0140 64)1 2)9
8 57)8129 57)7 0)1
9 48)1200 48)6 0)5

10 62)4169 62)0 0)4
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Figure 8. The diagram of the measuring equipment.
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surface nodes can be calculated by means of the structural analysis. The computing
errors introduced by the non-simultaneous measurement can then be cancelled.

5. CONCLUSIONS

The gist of the new numerical method is to replace the coe$cient matrices [A]
and [B] in the system equation with the particular solution matrices which are
formed of the particular solutions generated by fabricated sources. In the boundary
point method, it is unnecessary to consider the interpolating operation, and the
singular integral which is indispensable for the BEM also does not exist. By
avoiding direct computation for the coe$cient matrices, the boundary point
method can improve the calculation speed substantially while maintaining the
calculation precision. Another advantage of the method is that it can be used for
calculating the acoustic parameters (such as the sound pressure, etc.) at any desired
point in the sound "eld without calculation of the acoustic parameters on the
surface. Finally, the boundary point method can overcome the non-uniqueness
problem at the characteristic wavenumbers e!ectively.
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